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Somewhat interdisciplinary ‘References’ or
history of my own relevant to helicity

Jian-Zhou Zhu et al., 2008 (unsubmitted) on helical Navier-Stokes and
EDQNM;

Jian-Zhou Zhu, 2012 (unpublished) on two-dimensional gyrokinetics;
Jian-Zhou Zhu, Weihong Yang and Guang-Yu Zhu 2014 published in
Journal of Fluid Mechanics, “Purely helical absolute equilibria and chirality
of (magneto)fluid turbulence’;

Jian-Zhou Zhu, 2014 published in Phys:cs of Fluids, “Note on specific chiral

ensembles of statistical hydrodynamlcs ‘Order function’ for transition of
turbulence transfer scenarios”;

Jian-Zhou Zhu, 2014 “Exact solutions of some hydrodynamic type models:
restricted superposition of helical waves” (soon to appear on arXiv.org);

Jian-Zhou Zhu, 2014 “Is inverse cascade of passive scalar energy advected
by incompressible two-dimensional turbulence genuinely possible?” (soon
to appear on arXiv.org);

Jian-Zhou Zhu et al. 2014 “On chirality of two-fluid magnetohydrodynamic
turbulence” (to appear on arXiv.org);

Jian-Zhou Zhu et al. 2014 “Disordered DNA Neutral Evolution: Algebraic
Tails of Self-Alignment Concentrations” (to appear on arXiv.org).
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Outline

Partially and fully two-fluid MHDs (ttMHD) for
plasmas

Helical waves in ttMHD and helical representation:
“novel” derivation of the dispersion relation and
exact nonlinear (wave) solutions

Chiralities 1n the sense of Meyrand and Galtier,
and, 1n the sense of helical modes: Detailed
eMHD-1MHD analyses and unification

Conclusion



Partially and fully two-fluid MHDs
(ttMHD)

|ldeal Hall MHD equation (dimensionless):

g—f:—(u-V)HHb-V)b—VP
%:(b.v)v_(v.v)b—EVx[(vm)xb]
V.v=0

V-b=0

(1)
(2)
(3)
(4)



Reminding Navier-Stokes

dv __ Ov v? e 1 1 _
™ o +V 5 +Qxv=F p?p—l—vﬁv-l- 3 »V(V-v)

Helmholtz, Kelvin
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Frozen-in form
Hall (“partially” two-fluid):

ij:b:U;{:U—EVXbHHdQL:b—l—ﬁv}(ﬂ?'ﬂji:ﬂ

(MHD is not recovered by simply letting \epsilon be zero here;
the two vortexes nonlinearly couple by sharing the same b and v.)

“partially”. j=//=1o0re



Fully two-fluid:
0fd; = V X (’Uj X ﬂ’j): (J =1,€)
; =V x P; = mjw; + q;b, w; =V X v;, P, = mjv; + q;a

(two “Navier-Stokes™)

The nonlinear coupling between two vortexes is through sharing the same b.



Meyrand-Galtier's hMHD chirality
(very interesting and beautiful, but
not necessarily correct)



week ending

PRL 109, 194501 (2012) PHYSICAL REVIEW LETTERS 9 NOVEMBER 2012

Spontaneous Chiral Symmetry Breaking of Hall Magnetohydrodynamic Turbulence

Chirality and polarization.—We define the normalized
magnetic helicity and cross correlation as, respectively:

a-b*+a*-b i-b"+da*-b
T, = = , g, = — ,
2|al|b] ‘ 2|al|b]

where " means the Fourier transform, * the complex con-
jugate, and a the magnetic vector potential. From these
quantities, we may define the magnetic polarization, P,, =
0,0, Which varies by definition between —1 and +1.
Hall MHD supports R and L circularly polarized waves
for which we have respectively P,, = —1 and +1 [6]; the
first case corresponds to incompressible whistler waves
(also called kinetic Alfvén waves [18]) and the second to
inn-cyclntmnBy extension, in our numerical study
we define the R and L fluctuations for which we have,
respectively, P,, <0 and P,, > 0. Note that the forcing
terms in Eqgs. (1) and (2) are chosen such as injection rates
of cross helicity and magnetic helicity are null.



Numerical result and theoretical interpretation

Theoretical interpretation.—A simple theoretical inter-
pretation of our numerical simulations may be given by
rewriting the Hall MHD equations as follows [19]:

3,(!] = VX(I.IJ, XQJ), (_]=R, L}, (5)

with the pair of generalized vortices and velocities ({2; =
b.u, =u—d,VXb)and (2; =b+d,VXu, u, =u).
We first note that the generalized vorticities ()g; are
frozen in the flo /Let us imagine a turbulent i@
M generalized vortex evolves;say
vortices 1. In this particular regime u; must be equal
to zero; then we recover the well known EMHD regime
described above. Now let us imagine that only £); vortices
evolve: in this case, we must have up = 0 which implies

the condition u = d,V X b. Under these conditions,
Eq. (5) becomes:

9,(1 = diA)b=d,VX[(VXDb)X(1—diA)b]l (6)

-1 Flﬂuctuatlos | - L fluctuations  +1 B . . .
Pm Eq. (6) about a static homogeneous magnetic
field By gives w; (1 + d?k*)b = dikyByik X b, which
logarithmic. coopdinate). Taocoutours of energy (in Jogarithmic yields in the limit kd; >> 1 nothing else than.the dispersion
scale) are displayed in order to separate the regions of high relation of the left-handed circularly polarized cyclotron

energy (red) from those of low energy (blue). ie., o = Bnk"f’ (kd;) [20]. How can we interpret

FIG. 1 (color). Magnetic energy as a function of P,, and k (in



chirality in the sense of helical
representation
(selection and amplification in the
absolute equilibrium, polarized linear
wave, nonlinear unichiral solution)



Helical representation

Then, for a 3D transverse vector field v, the helical mode/wave representation in Fourier space

reads 79
v="Y v =Y K =Y 0°Wh (R)e*". (1)
c k.c k.c
Here i2 = —1 and ¢2 = 1 for the chirality indexes ¢ = “4+” or “—". [For consistency of notation, every

complex variable wears a hat and its complex conjugate is indexed by “*”.] For convenience, we
normalize the box to be of 27 period and that k > 1. The helical mode bases (complex eigenvectors
of the curl operator) have the following properties:

ik x h.(k)= ckh.(k),
h.(=k) = h’(k) = h_.(k)

and ﬁ,:l(k] . fi:jtk) = d¢,.c, (Euclidean norm). .ﬁ,:{k)e‘."” 1s the eigenfunction of the curl operator
corresponding to the eigenvalue ck. Or, with the case ¢ = 0 also included for the compressible field,
the variable ¢ “itself may be considered to be the eigenvalue of the operator (—V2)~"2V x when
this operator is properly interpreted.”” The bases can be simply constructed as* '”

h.(k)=(cip+ p x k/k)/(~2p),

with p being perpendicular to k. The structure h.(k)e'*” is common in inertial waves of rotating

fluids and cyclotron waves of plasmas, being circularly polarized, with ¢ = &£ representing opposite
chirality. For better or alternative physical intuition, we may conveniently call

5 (r|k) = 0°()h (k)™ + c.c.,

with c.c. for “complex conjugate™, a[“chiroid | which is maximally/purely helical or of highest degree
of chriality, since the helicity contribution of it is

V x 5°(rlk) - 1°(rlk) = 2ck|d°(k)|* = ck|B°(r|k)|*;



etciy

14TH EUROPEAN TURBULENCE CONFERENCE, 1—4 SEPTEMBER 2013, LYON, FRANCE

HALL MAGNETOHYDRODYNAMIC HARMONIC-HELICON ABSOLUTE EQUILIBR@

single-fluid MHD and electron MHD. Here, [ present the Hall MHD results. This model is Hamiltonian with the canonical
momenta (see, e.g., [14, 15]) p; = m.u + ¢; A and p. = g. A, from which one can find the rugged invariants, magnetic
helicity Hyr = % fA - Bd®r and “generalized” helicity He = % f(u B + jw - v)d>r, besides total energy
£ = 55 [[u® + B?]d*r, and the spectral densities are:

ak 4+ cly (204 cBgek)k :

T TC Iy i {: [ L Sf;ﬂ' € TC
Uk(k)=—4 D Upr(k) = =2 D, , Qu (k) = T a(k), and Qg (k) =2 D, +‘-“-"-§kbk(r‘f}r

with D, (k) = —c-2a Bg ek? — (4a® +2 B¢ € B + B2 )k — ¢ -4« Br. The new notations follow the rule in the above
and are explained by themselves. Summation over the ¢ index produces Servidio et al. [16]: For comparison, I have used
exactly the same form of invariants as theirs and that my « corresponds to their (3, 3¢ to their «v and (3, to their 6.

The poles of opposite chiral sectors have opposite signs.
pole - one chiral sector dominated states (OCSDS)

Sidenote for Navier-Stokes: ULk) = 1/(a + cBk), Q% (k) = ckU: (k)



(circularly) polarized waves

equation). We use U, = u,, B = B, + b with V x By = 0. The two-fluid “frozen-in”
equations then become

D (mV X g+ qb) = V x [u, x (meV x ug +q.b)] + ¢,V x (u, x By)(20)

which, as said, 1s solved by the Beltrami wave (to which we are limiting ourselves for the time
being), Eq. (6), 1.e.,
ug=[ Y a(k)h(k)e* e,
|k|=k.,c=c2

with ¢ being uniformly + or — and k, constants. The dispersion relation can be obtained in
the conventional way (Stix 1992) or more straightforwardly by using helical representation
from the beginning as follows, which will also settle down the relations among k. and o with
b = a,u,. The dispersion relation is determined by the Maxwell equations and the linear part
of Eq. (20), that 1s

O(msV x us + q:b) = ¢V x (us x By). (21)

From the above helical representation, as in the conventional derivation of dispersion relation
with mono-wavelength, but now also uni-chiral wave, we replace in the above equation
with Eq. (14), i.e.,

~ I i(k-e—wt
¢ = i1°(k)he(k)e' ke,

and similarly for b, which from the above linear equation (21) and V x b =
o Zs g.n,u 8 (for simplicity, we have neglected the displacement current &; E which
of course could be included in the calculation for more general results), leads to:

wlem kit (k) + q.b°(k)] = —qs Bokytis (k). ckbe (k) = po Z gsnsus(k).

Here k| = k- B,/ B,. Solving w we find b = a,u, with a, indeed a constant, depending only
on k (but not k) which is fixed for the Beltrami mode. Since the dynamics of all species share



Examination and Unification: linear
waves (L and R), nonlinear
UNIchiral vortex



Two requirements in Meyrand-
Galtier’s theory to get |Pm|="1

described above. Now let us imagine that only £); vortices
evolve: in this case, we must have up = 0 which implies
the condition u = d;V X b. Under these conditions,
Eq. (5) becomes:

3,(1 = d?A)b = d;V X[(VXb)X(l —d?A)b]. (6)

Linearising Eq. (6) about a static homogeneous magnetic
field By gives w; (1 + d?k*)b = d;kyByik X b, which
yields in the limit kd; >> 1 nothing else than the dispersion
relation of the left-handed circularly polarized cyclotron
waves, i.e., w; = Byk/(kd;) [20]. How can we interpret

_a-b +a-b _a-b +atb

— , o, — )
2/al[b] 2|al|b]

« one fluid: u and b aligned

e Linear wave with a backgrou nd field: where " means the Fourier transform, * the complex con-

. jugate, and a the magnetic vector potential. From these
b and k X b a“gned quantities, we may define the magnetic polarization, P,, =

OnT., which varies by definition between —1 and +1.



magic? actually problematic

Let’s check: Qs = V x (vs x £1y), (s=R,L)

where, Qp =b.vg=v— eV xband 2, = b+ €V x v, v, = v.
Meyrand & Galtier (2012) also claimed that if we let the 1on fluid speed v, = v

be zero, the Hall MHD equation degenerates to the electron magnetohydrodynamics (EMHD)

0ib = —eV x [(V x b) x b.

The electron speed satisfies the relation v. = —eV x b. With a mean magnetic vector, the EMHD

whistler wave dispersion relation w = ckykeBy gives the electron speed v.(k) = —ckeb(k) and

magnetic vector potential a(k) = ikx:(k] = ET‘:]. In this case,| P, is of the indefinite form 0/0;

instead of being —1 as indicated by Meyrand & Galtier (2012) when interpreting the k~7/3-sector

spectrum as the result of EMHD; actually, 9;b = 0 if v = 0. So, it appears that the correct way



eMHD story has problem but that of
IMHD can be ok

spectrum as the result of EMHD; actually, ;b = 0 if v = 0. So, it appears that the correct way
to reduce to EMHD 1s to “remove” v, and its dynamics, instead of simply putting v = 0 but,
even if so, F, 1s still undefined. Similarly, if we “remove™ v, and i1ts dynamics, but not to simply

let electron speed be zero as in Meyrand & Galtier (2012) (otherwise, d;b = 0), the Hall MHD

equation degenerates to the ion magnetohydrodynamics (IMHD) equation
(1 — A)b =€V x [(V x b) x (1 —€*A)b] (18)

where ion speed v; = €V x b. Then we linearize the IMHD equation about a mean magnetic field,

w(l + k*e2)b(k) = kyeBy(ik x b(k)) (19)
Remember:
» one fluid

« linear wave with a background field



So, let’s turn to another treatment
with helical representation

the ion fluid speed v = (0, then the electron fluid speed v. = —€V x b
Thus, Hall MHD equation degenerates to EMHD equation
0b = —€eV x [(V x b) x b.

We define

_ V(k)-b'(k) + v/ (k) - b(k)
2|'UP ”b k” .

Due to v, = —€V x b, v5(k) = —ckeb®(k) and
> —cke|b*(k)|?

__ o«
Tee =

> keltr (k)2
.
if we restrict to only one chiral sector for every k, 0, = ¢,0., = —¢; Py = 0,0 =
—¢?> = —1. We should note that we didn’t linearize the models, neither introduced the mean

magnetic field. Similarly for IMHD



Since the spectra presented in Fig. 3 of Meyrand & Galtier (2012) are from those fluctuations
of P, > 0.3 and P,, < —0.3, their EMHD and IMHD interpretation thus should be combined
with the argument of the dominance of one chiral sector at each k (| P,,| = 1 requires unichirality

at each k, but not necessarily homochirality for all k.) Note that when Navier-Stokes equation



Insights from the fully two-fluid
MHD and “electronic polarization”



0,2 = V X (vg x £g). (s =1,¢€)

assuming v. = —¢.V x b, we have the EMHD equation:
(1 — f_fjﬂ.)b = —€V X [(V x b) x (1— f_fj&)b].

Here the EMHD equation includes electron inertia term. e, is the ratio between electron skin

depth and normalization length scale. If we redefine the electron cross correlation as

-

Ve -b*+u-b
O = —
2l |[B)
using helical decomposition and choose only one chiral sector, we get P,,,. = 0,,0. = —2 =—1.

similarly for iIMHD:

bi-b*+0r-b
2|%;|b]

07; =




Thus, full two-fluid model clearly manifests that the really relevant “magnetic polarization™

should actually be “electronic polarization™, as the sign of P,, is determined by the charge, e or i.



Thank you!



